NATARI
ST BASIC

Quick Reference Guide

For the advanced programmer.

Il
a7
“ ' =H EEH

Every effort has been made to ensure the accuracy of the product documentation in this
booklet. However, because we are constantly improving and updating our computer software
and hardware, Atari Corporation is unable to guarantee the accuracy of grinted material after
the date of publication and disclaims liability for changes, errors, and omissions.

ATARI, ST, ST BASIC, and TOS are trademarks or registered trademarks of Atari Corporation.
GEM is a registered trademark of Digital Research Inc.

Software copyright © 1986, Atari Corporation and Metacomco plc. All rights reserved.

No reproduction of this document or any portion of its contents is allowed without the specific
written permission of Atari Corporation.

JNATARI

Copyright © 1987, Atari Corporation
Sunnyvale, CA 94086
All rights reserved.

TABLE OF CONTENTS

oooo0ooo0oboboooooooad

Welcome to Enhanced STBASIC 1
HowtoUse ThisGuide 1
What's On the ST Language Disk 1
The ST BASIC Sourcebook and Tutorial 2

Getting Started i 2
LoadingSTBASIC 2

Converting Programs to STBASIC 3
ReadingaBASICProgram 3
Areas of Difference, 3

STBASIC0 i 3
Non-STBASICS ...ttt 4

Error Codesand Messages 8

Quick Reference i i, 9
Declaration Characters 9
Delimiters i 9
Editing Commands 9
Operatorsoiiiii e e 10
Draw Mode 10
Fill PatternStyle i ... 10
Line PatternStyle "
POMrtSs .. e 11
Windows e e 11
Sound ... e e 11

Command Listing oo, 12

Statement Listing L. 12

Function Listing 13

System Variable Listing 13

Commands, Statements, Functions, and

System Variables, 14

Customer Support i 29

Welcome to Enhanced ST BASIC™

This enhanced version of ST BASIC replaces the original ST BASIC pro-
vided with all ST™ Computers. Both versions are similar to standard
BASIC dialects, but they use the windows, drop-down menus, and
graphic elements of the GEM™ desktop. They also take advantage of the
speed and graphic capabilities of the ST Computer system.

The new ST BASIC runs about three times faster than the original ver-
sion, and performs more functions—with 33 new reserved words, an
enlarged valid integer range, and more efficient syntax. The error mes-
sage list has been expanded, and error messages now return ctear
explanations at each occurrence.

Enhanced ST BASIC is compatible with the original release of ST BASIC,
So programs written in the earlier version can be used with the enhanced
version of the language. Refer to the section, Converting Programs to
ST BASIC, for information on how to use your old programs with the new
version of the language.

How to Use This Guide

This guide is designed for advanced programmers who understand the
BASIC language and are familiar with the standard procedures of the
GEM desktop. The Quick Reference Guide is arranged so the programmer
can understand the difference between this BASIC and the preceding
version of ST BASIC. Also, the unique features of BASIC on the ST Com-
puter are presented, along with demonstrations of how programs in other
dialects of BASIC can be loaded and run with enhanced ST BASIC.

What’s On the ST Language Disk

The ST Language disk that comes with your ST Computer contains the
files necessary to run enhanced ST BASIC.

BASIC.PRG is the BASIC program.
BASIC.RSC is the resource file for the language.

Note: Disregard any other files that may be on the disk. Other files may
hold the ST Desk Accessories or applications programs. However, only
the two files listed above are necessary to program with enhanced

ST BASIC.

The ST BASIC Sourcebook and Tutorial

The ST BASIC Sourcebook and Tutorial is the complete guide to enhanced
ST BASIC. The new Sourcebook is 322 pages long, providing easy access
to all levels of programming information. The beginning programmer is
given an extensive tutorial, while the advanced programmer has access to
complete technical documentation.

If you are interested in programming with enhanced ST BASIC, contact
your Atari dealer and ask for purchase information on The ST BASIC
Sourcebook and Tutorial (C026220 Rev B).

Getting Started

Before beginning with ST BASIC, make a backup copy of the ST Lan-
guage disk. This will provide security against accidental damage to the
original disk. (See the ST Computer Owner’s Manual for instructions.)

After backing up your ST Language disk, you are ready to use ST BASIC.
Begin by loading the language program into your ST Computer, follow-
ing the instructions below.

Loading ST BASIC

1. With the ST Computer turned on and the GEM desktop displayed,
double-click on the Floppy Disk A icon.

2. When the disk directory appears, double-click on BASIC.PRG. The
ST BASIC desktop appears.

Oesk File Run Edit Debug
LIST OUTPUT

[COMMAND °

L]
o 8 7]
] 1 [o[1

This desktop is your ST BASIC programming environment.

Note: ST BASIC uses the standard operating procedures of the GEM
desktop for accessing menu items, selecting options, manipulating
windows, and loading applications. Those procedures are explained in
detail in the ST Computer Owner's Manual.

2

Converting Programs to ST BASIC

This section describes the improvements to ST BASIC that are included
in enhanced ST BASIC, and the major differences between ST BASIC and
non-ST BASICs. Use the information given here to convert programs
written in another dialect of BASIC to run in ST BASIC.

Reading a BASIC Program

ST BASIC will only read programs that have been saved in ASCII text
form. Make sure that programs you wish to convert are in ASCII text
form.

An ST BASIC statement line must start with a line number, end with a line
feed, and be no more than 255 characters long. Valid line numbers range
from 1 to 65529 (0 to 65529 in other BASICs). ST BASIC does not recog-
nize line continuation characters (line feed in some BASICs); the second
part of any line continued in this way will be lost.

With the above exceptions, ST BASIC will preserve the text of your
program even if it reports syntax errors; you can then use the ST BASIC
Editor to change your program. The easiest way to convert a BASIC
program is to LOAD it into ST BASIC, see what errors are reported,
and EDIT the lines in place.

Areas of Difference

The differences between the enhanced ST BASIC and other BASICs
are discussed in the following information.

ST BASIC

Enhanced ST BASIC is compatible with the earlier release of ST BASIC.
Programs written in the earlier version can be used with the new release,
if the following differences are taken into consideration.

DEF SEG has been eliminated. Instead, there are special versions
of PEEK and POKE for word, byte, and long. These are PEEK__W,
PEEK__B, PEEK__L, and POKE_W, POKE__B, and POKE__L. Pro-
grams using DEF SEG in old ST BASIC must be rewritten.

Addresses for PEEK and POKE use integers so that accuracy is
sufficient.

Integers are now 32-bit numbers. This enlarges the valid range
for integers, previously —~32768 to 32767. The range is now from
-2147483648 to 2147483647.

A new syntax for GEMSYS and VDISYS that works more efficiently than
the old syntax has been introduced. The old syntax will still work with one
addition: the number in parentheses must be placed in GEM_CONTRL(0)
or GEMSYS or CONTRL(0) for VDISYS. Programs using VDISYS and
GEMSYS should be modified to use the new syntax.

New reserved words have been added. These are:

AREA GEM_ADDROUT PATTERN
ASK MOUSE GEM__CONTRL PEEK__B
ASK RGB GEM__GLOBAL PEEK__L
BIOS GEM__INTIN PEEK_W
BOX GEM__INTOUT POKE__B
CLEAR GEMDOS POKE__L
DRAW GSHAPE ' POKE_W
DRAWMODE LINEPAT RGB

ED MAT AREA SSHAPE
ERR$ MAT DRAW STATUS
GEM__ADDRIN MAT SOUND XBIOS

Programs written in the earlier ST BASIC that use any of those words
in any way other than as reserved words must be rewritten.

Any syntax that calls for a list of x,y pairs is documented as requiring
a semicolon (;) between the pairs. The semicolon enhances readabil-
ity, although the old syntax will still work.

SYSTAB is now an array of 2-byte integers. Accesses to SYSTAB are
as array elements whose index is half of the previous offset: for exam-
ple, SYSTAB + 6 becomes SYSTAB(3).

INP used with -1 will not always return a negative number; however, it
will return a non-zero number.

The period (.) is no longer allowed in variable names and keywords,
and should be replaced with an underscore character.

Non-ST BASICs

Identifiers

Variable names and keywords in ST BASIC must start with a letter, and
may contain letters (A to Z or a to z), digits (0 to 9), and the underscore
character (__). Note that uppercase and lowercase letters are equiva-
lent. Other BASICs allow the period character (.) but not the underscore,
and in some instances the case of letters is significant.

String Constants

ST BASIC allows you to insert a double quote (") in a string constant
by escaping it with another double quote. For example:

PRINT ""This is truly a lemon,'" he said."
prints
"This is truly a l1emon," he said.

Other BASICs treat the double quote as ending one string constant
and starting another. Since separators between items in PRINT lists
are not mandatory, you may find that a statement such as

pRINT Ilall IIBII

in an existing BASIC program won’t do what you expect in ST BASIC.
ST BASIC prints "Av B as A"B; other BASICs print it as AB.

Arithmetic

ST BASIC recognizes three numeric types: integer, single-precision
floating point, and double-precision floating point.

fntegers occupy 4 bytes and can represent numbers in the range
-2147483648 to 2147483647. In many other BASICs, integers occupy

2 bytes and can represent numbers in the range -32768 to 32767. This
affects the MKI$ and CVI functions and will affect the formats of -
records containing integers.

ST BASIC evaluates expressions involving only integer terms in
integer, which may mean that intermediate values can overflow. For
example:

a¥. = b¥ % c¥% — 176000
is evaluated in integer.

Floating point values are held in IEEE format. This has a slightly differ-
ent dynamic range and precision than some other formats. ST BASIC
does not recognize denormalized numbers, NANs, or infinities. For
example:

PRINT 1E-38

will print 0, as 1E-38 is smaller than the smallest single-precision nor-
malized number in [EEE format.

Mixed-mode arithmetic is carried out in double-precision because the
precision of integers (31 bits plus sign) is greater than that of single-
precision floating point (24 bits plus sign).

Translation and Interpretation

ST BASIC translates a program into a set of internal codes as you type
it in or LOAD it. When a program is RUN, the internal code is executed.
This differs from most microcomputer BASICs which translate and
execute as they go, and causes differences in the effect of declarative
statements.

DEF-type statements (which define default variable types) alter the
action of the translator. They take effect as soon as they are typed in,
no matter where in the program they happen to be. For that reason,
the following example is not possible in ST BASIC:

106 input ''what type ' ;ax

110 if aX. = 1 then osub 2000: Jo0to0 500
138a=5.0 : 90to0 600

580 a = '"yes!'

6680 print a

708 end

2000 defstr a

2810 return

DEF FN defines a user function wherever it is placed in the program. The
DEF FN function does not have to be executed to define the function. You
cannot have two DEF FN statements defining the same function. For that
reason, the following example is not possible in ST BASIC:

100 input '"which def ' ax

116 if a¥X = 1 then 90sub 2000 else J0sub 2160
128 print FNRC1,2)

130 end

2000 def fnri(x. .yl = x/y

28160 return

2180 def fAr(x, .yl - y/x

2110 return

FOR/NEXT Restrictions

ST BASIC requires that each FOR statement be matched with exactly
one NEXT statement, and each WHILE statement be matched with
exactly one WEND statement. This matching is carried out before the
program is run. Many BASICs carry out the matching as the program
is running, allowing constructs such as:

1080 FOR i¥X = 1 TO 10006

300 IF i > 500 THEN NEXT

500 NEXT

ST BASIC will report an error at line 300, since it cannot tell before the
program is run whether or not the NEXT at line 300 will be matched
with the FOR at line 100.

ST BASIC does not permit a jump into a FOR/NEXT or WHILE/WEND
loop from outside the loop. For example, given

16 GOTO 200
168 FOR i = 1 t0 1680606

200 PRINT "Value of i¥ is "2 i¥%

380 NEXT

ST BASIC will report an error when asked to RUN the program. Other
BASICs may run the program, and report an error such as “NEXT
without FOR" at line 300.

Command Environment

ST BASIC makes a distinction between statements (for example, PRINT),
which are part of a program but cannot alter the program itself, and com-
mands, which are used to examine or alter a program, and which cannot
be part of the program itself. Some other BASICs allow commands to be
part of the program they operate on. ST BASIC will report an error if it
comes across a command on a program (line-numbered) line. ST BASIC
commands are listed on page 12.

Error Codes and Messages
The following error codes and error messages are used with ERL,
ERR, ERR$, and ERROR. (For explanations of these reserved words,
refer to the section Commands, Statements, Functions, and System

Variables.)
Code Message
0-1 Undefined error
2 Syntax error
3 RETURN without GOSUB
4 Out of data
5 lllegal function call
6 Overflow
7 Out of memory
8 Undefined line number
9 Subscript out of range
10 Duplicate definition
11 Division by zero
12 Illegal in immediate mode
13 Type mismatch
14 Undefined error
15 String too long
16 Expression too complex
17 CONT valid only in BREAK
mode
18 Undefined user function
19 Undefined error
20 RESUME without error
21 Undefined error
22 Missing operand
23 Program line too long
24-49 Undefined error
50 Field overflow
51 Invalid record length
52 Invalid file number
53 File not found
54 Invalid file mode
55 File already open
56 Undefined error
57 Device 1/O error
58 File exists
59 Unable to create a file
60 Undefined error
61 Disk full
62 End of file
63 Invalid record number
64 Invalid filename
65 Invalid character in
program file
66 Direct statement in file
67 KILL failed

68
69~-92

93

94

95

96-98

99
100
101
102
103
104
105
106
107
108
109
110
111

112-200

202
203

224-230

Device unavailable
Undefined error
Undefined segment
Protected file

Not a BASIC program
Undefined error
—Break—

Undefined error
Program too large
Undefined error
Invalid line number
Missing line number
Undefined error
Statement not found
Integer overflow

Redo from start

Stop

GOSUBs nested too deep
Invalid BLOAD file
Undefined error
Invalid option
Command not allowed
here

Line number required
FOR without NEXT
NEXT without FOR
Comma missing
Parenthesis missing
Option base must be 0
or1

Undefined error
WHILE without WEND
WEND without WHILE
Undefined error
Duplicate DEF FN
Invalid jump into loop
Duplicate line number
Duplicate label
Undefined error
System error #%u
Program not run

Too many FOR loops
Undefined error

Quick Reference

Declaration Characters
Character Function

% Integer-type declaration character

$ String-type declaration character

! Single-precision type declaration character

Double-precision type declaration character
Delimiters

Character Purpose

! Delimits remarks

" Delimits strings
Delimits prompts
Delimits arguments
Delimits statements

Editing Commands.
Function Key Option

[F1] Insert space
[F2] Delete character
[F3] Insert line

[F4] Delete line

[F5] Page up

[F6] Page down

[F7] Load text

[F8] Save text

[F9] New buffer
[F10] Exit Edit window

EDIT [Return] Start edit

Operators
Arithmetic Operators

Purpose

+

*

/

/\OT * %

Relational Operators

Adds; concatenates strings
Subtracts; negates

Multiplies

Divides

Converts to integers and divides
Exponentiates

Meaning

VvV Al

< =
> =
< >

Logical Operators

Equal to

Less than

Greater than

Less than or equal to
Greater than or equal to
Not equal to

Purpose

AND Performs logical “and”
EQV Tests equivalence
IMP Tests implication
NOT Negates expression
OR Performs logical “or”
XOR Performs exclusive “or”
Draw Mode
Number Mode
1 Replace
2 Transparent
3 Exclusive OR
4 Reverse transparent

Fill Pattern Style

Number Style
0 Hollow
1 Solid
2 Pattern
3 Hatch

10

Line Pattern Style

Number Style

1 Solid

2 Long dash

3 Dot

4 Dash dot

5 Dash

6 Dash dot dot

7 Defined by user
Ports
Number Port

0 Printer

1 Modem

2 Console

3 MIDI
Windows
Number Window

0 Edit

1 List

2 Output

3 Command
Sound
Parameters Description Range
Duration Time is 1/50 second before next sound
Note Controls pitch: note position in scale 11012
Octave Controls pitch: octave number 1t08
Voice Sound channel number 1t03
Volume Controls degree of loudness 0 (off) to

15 (max.)

1

Command Listing

AUTO EDIT LOAD RUN TRON
BREAK ERA MERGE SAVE UNBREAK
CONT FOLLOW NEW STEP UNFOLLOW
DELETE LIST RENUM TRACE UNTRACE
DIR LLIST REPLACE TROFF

Statement Listing

AREA FILL ouT

ASK MOUSE FOR PATTERN
ASK RGB FULLW PCIRCLE
BLOAD GEMDOS PELLIPSE
BOX GET PRINT[#]
BSAVE GOSUB PRINT USING
CALL GOTO PUT
CHAIN (MERGE) GOTOXY QuUIT
CIRCLE GSHAPE RANDOMIZE
CLEAR IF READ
CLEARW INPUT[#] REM
CLOSE KILL RESET
CLOSEW LET RESTORE
COLOR LINE INPUT[#] RESUME
COMMON LINEF RETURN
DATA LINEPAT RGB

DEF FN LPRINT RSET
DEFDBL LSET SOUND
DEFINT MAT AREA SSHAPE
DEFSNG MAT DRAW STOP
DEFSTR MAT LINEF SWAP
DIM MAT SOUND SYSTEM
DRAW NAME WAVE
DRAWMODE NEXT WEND
ELLIPSE ON WHILE
END ON ERROR GOTO WIDTH
ERASE OPEN WRITE[#]
ERROR OPENW XBIOS
FIELD OPTION BASE

12

Function Listing

ABS
ASC
ATN
BIOS
CDBL
CHR$
CINT
COSs
CSNG
CvD
CvI
CvS
EOF
ERRS$
EPX
FIX
FLOAT
FRE
GEMSYS

HEX$
INP
INPUTS
INSTR
INT
LEFTS$
LEN
LOC
LOF
LOG
LOG10
LPOS
MID$
MKD$
MKI$
MKS$
OCT$
PEEK
PEEK_B

System Variable Listing

CONTRL

ERL

ERR
GEM__ADDRIN

GEM_ADDROUT
GEM__CONTRL
GEM_GLOBAL
GEM__INTIN

PEEK_L
POKE
POKE__B
POKE__L
POS
RIGHT$
RND
SGN

SIN
SPACE$
SPC

SQR
STR$
STRING$
TAB

TAN

VAL
VARPTR
VDISYS

GEM__INTOUT PTSIN

PTSOUT
STATUS
SYSTAB

13

Commands, Statements, Functions,
and System Variables

Name Format/Description
= <variable> =
<numeric expression> |'string”
Assigns value to variable (see LET).
ABS ABS (<numeric expression>)
Returns absolute value of argument.
AREA AREA <point list>
Draws a filled polygon.
ASC ASC (<string expression>)
Returns ASCII code of specified character.
ASK MOUSE ASK MOUSE <x>, <y>,
Returns the current mouse coordinates and
button status into the specified variables.
ASK RGB ASKRGB <reg>, <r>, <g>,
Places the actual red, green, and blue values of
the specified palette into the listed variables.
ATN ATN (< numeric expression>)
Returns arctangent of argument.
AUTO AUTO [<starting line number >
[,<increment>]
Automatically numbers lines on entry.
BIOS BIOS <numeric expression>, <arglist>
Provides an operating system call to BIOS.
BLOAD BLOAD < filespec>, <address>
Loads specified binary file.
BOX BOXJ[FILL] <x1,y1>,<x2,y2>
Draws a box.
BREAK BREAK [<line number list>]
Inserts breaks between lines of executing program.
BSAVE BSAVE <filespec>, <address>, <length>

14

Saves a section of memory in a binary file.

CALL
CDBL

CHAIN

CHAIN MERGE

CHR$

CINT

CIRCLE
CLEAR

CLEARW
CLOSE
CLOSEW

COLOR

COMMON

CONT

CALL <numeric variable> [(<parameter list>)]
Calls machine language subroutine.

CDBL (<numeric expression>)
Converts argument to double-precision number.

CHAIN <filespec> [,<line descriptor>][,ALL]

Replaces current program with specified pro-
gram and executes it.

CHAIN MERGE < filespec> [, <line descriptor>]
[,DELETE </line descriptor list>]

Merges current program with specified program
and executes result.

CHRS$ (< numeric expression>)

Converts integers to one-character strings
according to ASCII code.

CINT (<numeric expression>)

Converts argument to integer.

CIRCLE <x>, <y>, <radius>

[,<start angle,end angle >]

Draws circles and arcs.

CLEAR
Sets all numeric variables to 0 and string vari-
ables to null. Undefines all arrays.

CLEARW < numeric expression>
Clears ST BASIC windows.

CLOSE [#]< file number>
Ends input and output and closes data file.

CLOSEW < window number >
Closes BASIC windows.

COLOR [<text color, fill color, line color,
index, style>]
Sets text, fill, and plot colors and fill patterns.

COMMON <variable> [,<variable> ...]
Passes specified variables to a chained program.

CONT
Resumes execution after a break.

15

16

CONTRL

COS

CSNG

CvD

Cvi

Cvs

DATA

DEF FN

DEFDBL

DEFINT

DEFSNG

DEFSTR

DELETE

CONTRL (<offset>)= <expression >

A VDI-related system variable that can act as a
built-in array.

COS (< numeric expression>)

Returns cosine of argument.

CSNG (<numeric expression>)
Converts argument to single-precision number.

CVD (< 8-byte string>)

Converts 8-byte string to double-precision
number.

CVI (< 4-byte string>)

Converts 4-byte string to integer.

CVS (< 4-byte string>)

Converts 4-byte string to single-precision
number.

DATA <constant> [, <constant> ...]
Provides data for a READ statement to use.

DEF FN <function name>
[(<variable list>)] = <definition>
Defines user function.

DEFDBL <letter> [— <letter>]

Defines range of initials as double-precision
numbers.

DEFINT <letter> [— <letter>]

Defines range of initials as integers.

DEFSNG <letter> [— <letter>]

Defines range of initials as single-precision
numbers.

DEFSTR <letter> [— <letter>]
Defines range of initials as strings.

DELETE <line number> [— <line number>]
Erases program lines from memory.

DIM

DIR

DRAW

DRAWMODE

EDIT

ELLIPSE

END

EOF

ERA

ERASE

ERL

ERR

ERR$

DIM <array name> (<subscript>
[,<subscript>]...)[.<array name>
(< subscript>, <subscript> ...)]

Associates variable name with array of specified
dimensions.

DIR [<disk drive>:]
[[<filename >].[< extension>]]

Lists a directory.

DRAW <point list>
Draws a line through the vertices given in the

argument list.

DRAWMODE < integer variable >
Sets the current drawing mode.

EDIT [<line number>]
Edits current program.

ELLIPSE <x>, <y>, <horizontal radius>,

<vertical radius> [,<start angle >,
<end angle >

Draws an ellipse.

END

Ends program, closes files, and returns to
immediate mode.

EOF (< file number>)
Detects end of file.

ERA [<disk drive: >] [<filename >]
Deletes a file from the disk.

ERASE <array name> [,<array name>] ...
Erases arrays.

ERL = <error line >

Contains the line number where an error
occurred.

ERR = <error code >
Contains an error code.

ERR$(<n>)
Returns an error message for the specified code.

17

ERROR

EXP

FIELD

FILL

FIX

FLOAT

FOLLOW

FOR ...TO

FRE

FULLW

GEM__ADDRIN

GEM__ADDROUT

GEM__CONTRL

18

ERROR <numeric expression>
Simulates an error.

EXP (<numeric expression>)
Returns e to specified power.

FIELD #<file number>, <field width> AS

< String variable > [, < field width> AS

< Sstring variable>] ...

Allocates space for variable values in file buffer.

FILL <x>, <y>
Fills shapes with colors or patterns.

FIX (<numeric expression>)
Truncates argument to integer.

FLOAT (<integer expression >)
Converts an integer to a single-precision number.

FOLLOW <variable> [,<variable> ...]
Tracks values of specified variables during pro-
gram execution.

FOR <counter variable > = <start> TO
<limit> [STEP<increment>]

Initiates program loop.

FRE [(<numeric expression>)]

Returns number of bytes in memory unused by
ST BASIC.

FULLW < window number>
Sets ST BASIC windows to full screen size.

GEM__ADDRIN (<offset>)= <expression>
A GEM-related system variable that can act as a
built-in array.

GEM__ADDROUT (< offset>)= <expression >
A GEM-related system variable that can act as a
built-in array.

GEM__CONTRL (<offset>)= <expression>
A GEM-related system variable that can act as a
built-in array.

GEM__GLOBAL

GEM__INTIN

GEM__INTOUT

GEMDOS

GEMSYS

GET

GOSUB

GOTO

GOTOXY

GSHAPE

HEX$

GEM_GLOBAL (<offset>)= <expression>

A GEM-related system variable that can act as a
built-in array.

GEM__INTIN (<offset>) = <expression>

A GEM-related system variable that can act as a
built-in array.

GEM__INTOUT (< offset>) = <expression >

A GEM-related system variable that can act as a
built-in array.

GEMDOS <numeric expression>, <arglist>
Provides an operating system call to GEMDOS.

GEMSYS < AES Op Code >
Accesses the operating system'’s AES interface.

GET[#] <file number> [,<record number>]
Reads record from random file into buffer.

GOSUB <line descriptor>
Sends program control to subroutine.

GOTO <line descriptor>
Jumps program execution to specified line.

GOTOXY < column position>, <row position>

Places output cursor at specified column and
row position.

GSHAPE <x1>, <y1>, <array>

Writes the raster stored in the specified array to
the screen.

HEX$ (<numeric expression>)

Returns hexadecimal equivalent of argument in
string form.

19

20

INP

INPUT

INPUT#

INPUT$

INSTR

INT

INTIN

INTOUT

KILL

IF <relationship> THEN
<line number> | <label >

IF <relationship> GOTO
<line number> | <label>

IF <relationship> THEN </ine number>
[ELSE <line number> | <label>]

IF <relationship> THEN <clause>

[ELSE <clause>]

Performs condition and decides on the direction
of program flow according to the result.

INP (<port number>)
Returns a byte value from a selected port.

INPUT [;] [<prompt string> <;|, >]
<variable> [, <variable>] ...
Enters keyboard input during program
execution.

INPUT# < file number>, <variable >

[, <variable>1] ...

Assigns sequential file data to specified
variable(s).

INPUTS$ (<number of characters> [,[#]

<file number>1])

Returns string of specified length from keyboard
or data file.

INSTR ([<starting point>,]

<target string>, <pattern string>)
Searches for string within string and returns
position.

INT {(<numerical expression>)
Rounds argument to next lower integer.

INTIN (<offset>)= <expression >
A VDlI-related system variable that can act as a
built-in array.

INTOUT (<offset>)= <expression>
A VDlI-related system variable that can act as a
built-in array.

KILL <string expression >
Deletes a file.

LEFTS$

LEN

LET

LINE INPUT

LINE INPUT#

LINEF

LINEPAT

LIST

LLIST

LOAD

LOC

LOF

LOG

LEFTS (<target string>,
<number of characters>)

Returns substring from beginning of target
string.

LEN (< string expression>)

Returns length of specified string.

LET <variable> =
<numeric expression> | ‘'string”

Assigns value to variable.

LINE INPUT [{;]"prompt string”;
|[;]“prompt string’",] <string variable >
Assigns sequential file record to specified
variable.

LINE INPUT# <file number>, <string variable >

Reads line from data file and assigns it to string
variable.

LINEF <point list>
Draws a line through the vertices given in the
argument list.

LINEPAT <style> [, <pattern>]
Sets the line pattern.

LIST [<line descriptor list>]
Displays specific program line(s) in the List
window.

LLIST [<line descriptor list>]
Prints specific program line(s) on the printer.

LOAD <filename >
Loads specified program.

LOC (< file number> or <record number>)

Returns record number or number of characters
read or written.

LOF (< file number>)
Returns length of file.

LOG (< numeric expression>)

Calculates and returns natural logarithm of
argument.

21

LOG10

LPOS

LPRINT

LSET

MAT AREA

MAT DRAW

MAT LINEF

MAT SOUND

MERGE

MID$

MID$

MKD$

22

LOG10 (<numeric expression>)
Calculates and returns base-10 logarithm of
argument.

LPOS [(<dummy argument>)]
Returns the position of the print-head.

LPRINT [<ist of expressions>]
Prints data on the printer.

LPRINT USING <format string expression >,
[<list of expressions >]

Prints data on printer using specified format.

LSET <string variable> = < string expression >
Moves data into string and left-justifies it.

MAT AREA <count>, <array>
Draws a filled polygon, taking the vertices of the
polygon from the specified array.

MAT DRAW <count>, <array>

Draws a line, taking the vertices of the line from
the specified array.

MAT LINEF <count>, <array>
Draws a line, taking the vertices of the line from
the specified array.

MAT SOUND <array>
Submits the specified array to the sound
daemon.

MERGE < filename >
Merges specified program with resident program.

MID$ (“target string”, <start> [,<length>])
Returns specified substring from target string.

MIDS$ (< string variable >, <start>
[,<length>])="string"”

Substitutes one substring for another in existing
string value.

MKDS$ (<numeric expression>)
Converts double-precision number to string.

MKI$

MKS$

NAME

NEW

NEXT

OCT$

ON

ON ERROR GOTO

OPEN

OPENW

OPTION BASE

ouT

PATTERN

MKI$ (<integer>)
Converts integer to string.

MKS$ (<numeric expression>)
Converts single-precision number to string.

NAME <old filename> AS <new filename >
Changes name of file.

NEW [< filename >]

Clears memory for new program and optionally
names the new program.

NEXT [<counter> [,<counter>]] ...
Defines end of loop.

OCTS$ (<numeric expression>)

Returns octal equivalent to argument in string
form.

ON <expression> GOSUB < line descriptor >
[.<line descriptor>] ...

Defines multiple branch to subroutines.

ON <expression> GOTO <line descriptor>
[,<line descriptor>] ...

Defines multiple branch.

ON ERROR GOTO 0| <line descriptor>
Defines starting line of error trap.

OPEN “mode”, # <file number>, “filename”
[,<record length>]
Opens specified data file.

OPENW < window number >
Opens ST BASIC windows.

OPTION BASE <0|71>
Sets base for array dimensions.

OUT <port number>, <byte>
Sends a byte value to a selected output port.

PATTERN <plane>, <array>
Sets the fill style.

23

24

PCIRCLE

PEEK

PELLIPSE

Pl

POKE

POS

PRINT

PRINT USING

PCIRCLE <x>, <y>, <radius>
[,<start angle>, <end angle>]

Draws solid circles and pie shapes.

PEEK_B (<address>)
Returns an 8-bit value at memory address.

PEEK (<address>)
Returns a 16-bit value at memory address.

PEEK__L (<address>)
Returns a 32-bit value at memory address.

PELLIPSE <x>, <y>, <horizontal radius>,
<vertical radius>, <start angle>, <end angle >

Draws a solid ellipse or elliptical pie shape.

Pl = <variable >
Holds the value of pi.

POKE__B (<address>, <data>)
Inserts an 8-bit value at memory address.

POKE (<address >, <data>)
Inserts a 16-bit value at memory address.

POKE__L (<address>, <data>)
Inserts a 32-bit value at memory address.

POS (< file number>)

Returns number of characters printed since last
new line, or the current position of the cursor on
the screen or printer.

PRINT [<print item>] <;|,>
[<printitem> [<;|,>]...]]

?[<print item>] <;|,> [<print item >
[<:[.>]...1]

Displays data on the screen.

PRINT USING < “format string” >,
<variable list>
Prints data on screen using specified format.

PRINT# <file number>, USING

< "“format string” >, <expression>
[,<expression> ...]

Prints data to file using specified format.

PRINT#

PTSIN

PTSOUT

PUT

QuIT

RANDOMIZE

READ

REM

RENUM

REPLACE

RESET

RESTORE

RESUME

PRINT# < file number>, <print item>
[<print item> ...]
Outputs data to file.

PTSIN (<offset>)=(expression)

A VDl-related system variable that can act as a
built-in array.

PTSOUT (< offset>) = (expression)

A VDl-related system variable that can act as a
built-in array.

PUT [#] <file number> [,<record number>]
Writes record to random access file.

QuUIT

Leaves ST BASIC and returns to the GEM
desktop.

RANDOMIZE [<numeric expression>]
Seeds random number generator.

READ <variable>, <variable> ...

Assigns item(s) from DATA statement to speci-
fied variable(s).

REM <remark >

" <remark >
Inserts remark in program.

RENUM [<new first line>][,<increment>]
Renumbers current program lines.

REPLACE [<filename >][,<line humber list>]
Replaces existing program with new version.

RESET
Places the contents of the Output window into
the graphics buffer.

RESTORE [</ine descriptor>]
Resets pointer to specified DATA statement.

RESUME [NEXT |0| </ine descriptor>]
Defines point of return from error trap.

25

26

RETURN

RGB

RIGHTS

RND

RSET

RUN

SAVE

SGN

SIN

SOUND

SPACE$

SPC

SQR

SSHAPE

RETURN
Marks end of a subroutine.

RGB <reg>, <r>, <g>,
Sets color palette to the specified red, green,
and blue proportions.

RIGHTS (<target string>, <integer>)
Returns substring from end of target string.

RND [(<numeric expression>)]
Returns random number.

RSET <string variable > = < String expression >
Moves data into string and right-justifies it.

RUN [<filename >][,<line descriptor>]
Executes program.

SAVE [<filename>][,<line descriptor list>]
Saves the current program in source form.

SGN [(<numeric expression>)]
Returns the sign of a number.

SIN (<numeric expression>)
Returns the sine of the argument.

SOUND <voice>, <volume>, <note>,
<octave>, <duration>

Makes musical notes.

SPACES (<numeric expression>)
Returns string of specified length filled with
spaces.

PRINT SPC (<numeric expression>)
Inserts specified number of blank spaces in
print string.

SQR (<numeric expression>)

Returns square root of argument.

SSHAPE <x1,y1>; <x2,y2>, <array>
Saves a raster in a specified array.

STATUS STATUS = <variable >

Holds the value returned from each call to TOS™
GEM, VDI, or AES.

STEP STEP [<filename>]
[, <line descriptor number>]
Executes program line by line.

STOP STOP
Halts program execution.

STR$ STRS$ (<numeric expression>)
Converts numeric argument to a string.
STRING$ STRINGS (< numeric expression >,
<numeric expression>| <string expression>)

Returns string of given length filled with speci-
fied character.

SWAP SWAP <first variable >, <second variable>
Exchanges values of specified variables.

SYSTAB SYSTAB (<offset>) = <expression>
Provides a system pointer table.

SYSTEM SYSTEM
Exits ST BASIC and returns to the GEM
desktop.

TAB PRINT TAB (< tab position>)
Inserts tabs in PRINT statement.

TAN TAN (< angle in radians>)
Returns tangent of argument.

TRACE TRACE [<line number> — <line number>]
Steps through execution printing specified lines.

TROFF TROFF [<line number> — <line number>]
Turns off TRON.

TRON TRON {[</ine number> — <line number>]

Steps through execution printing specified lines
and variable values.

UNBREAK UNBREAK [</ine number> — <line number>]
Turns off BREAK.

27

UNFOLLOW

UNTRACE

VAL

VARPTR

VDISYS

WAVE

WEND

WHILE

WIDTH

WRITE

WRITE#

XBIOS

UNFOLLOW [<variable>[, <variable>] ...]
Turns off FOLLOW.

UNTRACE [<line number> — <line number>]
Turns off TRACE.

VAL (< string expression>)
Returns numeric value of specified string.

VARPTR (< variable > | # < file number>)
Returns offset of parameter from heap segment.

VDISYS [(dummy argument)]

Allows the user access to the operating
system'’s VDI interface.

WAVE <enable>, <envelope>, <shape>,
<period>, <delay>

Controls the waveforms used in SOUND
statements.

WEND
Defines end of WHILE.

WHILE </ogical expression >
Defines start and condition of indefinite loop.

WIDTH [#<file number>,] <width>
Sets width for screen output.

WIDTH LPRINT <width>
Sets width for printer output.

WRITE [<expression>][,<expression>]
Displays output on the screen.

WRITE# <file number>, <expression>
[,<expression>] ...
Sends output to seguential file.

XBIOS <function> [,<arglist>]
Provides an operating system call to XBIOS.

Note: <relationship > is a numeric expression which evaluates to an
integer value. If the value is zero, it is taken to be false; if it is non-
zero, it is taken to be true.

28

CUSTOMER SUPPORT

ooco0oo0ooobooooobobooogb

Atari Corporation welcomes questions about your ATAR! Computer
products. Write to:

Atari Corporation
Customer Relations
P.O. Box 61657
Sunnyvale, CA 94088

Please write the subject of your letter on the outside of the envelope.

ATARI User Groups are outstanding sources of information on how to get
the most from your ATARI Computer. To receive a list of ATARI User
Groups in your area, send a self-addressed, stamped envelope to:

Atari Corporation
User Group List

P.O. Box 61657
Sunnyvale, CA 94088

e i

Interested in programming with enhanced ST BASIC?
The new ST BASIC Sourcebook and Tutorial is the
resource you need.

This 322-page manual includes a complete tutorial for
the beginning programmer, plus an exhaustive reference
section for the advanced BASIC programmer. The ST
BASIC Sourcebook and Tutorial is the only documen-
tation you will ever need to take advantage of this new
BASIC language.

For purchase information, contact your Atari dealer
and ask for The ST BASIC Sourcebook and Tutorial
(C026220 Rev B).

JNATARI

gogzriear:; (@Cllggzolgéari Corporation C1 00536-001 REVA
AlIJI rights r'eservedA 0033007'081

Printed in Taiwan
1990 10 C. C.

